Abstract
1 Department of Microbiology & Immunology, Brody School of Medicine at East Carolina University Greenville, NC 27858 USA
2 Department of Anatomy & Cell Biology, Brody School of Medicine at East Carolina University, Greenville, NC 27858 USA
* Current Address: Wake Forest University, Winston-Salem, NC, USA
# Current Address: Vanderbilt University, Nashville, TN, USA
Received: August 26, 2011; Accepted: August 30, 2011; Published: August 30, 2011;
Keywords: Akt, ERK, mTOR, Senescence, Drug Resistance, Tamoxifen
Correspondence:
James A. McCubrey, email:
Abstract
Escape from cellular senescence induction is a potent mechanism for chemoresistance. Cellular senescence can be induced in breast cancer cell lines by the removal of estrogen signaling with tamoxifen or by the accumulation of DNA damage induced by the chemotherapeutic drug doxorubicin. Long term culturing of the hormone-sensitive breast cancer cell line MCF-7 in doxorubicin (MCF-7/DoxR) reduced the ability of doxorubicin, but not tamoxifen, to induce senescence. Two pathways that are often upregulated in chemo- and hormonal-resistance are the PI3K/PTEN/Akt/mTOR and Ras/Raf/MEK/ERK pathways. To determine if active Akt-1 and Raf-1 can influence drug-induced senescence, we stably introduced activated Akt-1(CA) and Raf-1(CA) into drug-sensitive and doxorubicin-resistant cells. Expression of a constitutively-active Raf-1 construct resulted in higher baseline senescence, indicating these cells possessed the ability to undergo oncogene-induced-senescence. Constitutive activation of the Akt pathway significantly decreased drug-induced senescence in response to doxorubicin but not tamoxifen in MCF-7 cells. However, constitutive Akt-1 activation in drug-resistant cells containing high levels of active ERK completely escaped cellular senescence induced by doxorubicin and tamoxifen. These results indicate that up regulation of the Ras/PI3K/PTEN/Akt/mTOR pathway in the presence of elevated Ras/Raf/MEK/ERK signaling together can contribute to drug-resistance by diminishing cell senescence in response to chemotherapy. Understanding how breast cancers containing certain oncogenic mutations escape cell senescence in response to chemotherapy and hormonal based therapies may provide insights into the design of more effective drug combinations for the treatment of breast cancer.