Oncotarget

Research Papers:

The essential role of methylthioadenosine phosphorylase in prostate cancer

Gaia Bistulfi, Hayley C. Affronti, Barbara A. Foster, Ellen Karasik, Bryan Gillard, Carl Morrison, James Mohler, James G. Phillips and Dominic J. Smiraglia _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2016; 7:14380-14393. https://doi.org/10.18632/oncotarget.7486

Metrics: PDF 2089 views  |   HTML 4277 views  |   ?  


Abstract

Gaia Bistulfi1,*, Hayley C. Affronti1,*, Barbara A. Foster2, Ellen Karasik2, Bryan Gillard2, Carl Morrison3, James Mohler4, James G. Phillips5 and Dominic J. Smiraglia1

1 Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA

2 Department of Molecular Pharmacology and Cancer Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA

3 Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA

4 Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA

5 Department of Translational Hematology/Oncology Research, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA

* These authors have contributed equally to this work

Correspondence to:

Dominic J Smiraglia, email: Dominic.Smiraglia@RoswellPark.org

Keywords: prostate cancer, methionine salvage pathway, methionine cycle, methylthioadenosine phosphorylase, polyamine metabolism

Received: October 12, 2015 Accepted: January 24, 2016 Published: February 18, 2016

Abstract

Prostatic epithelial cells secrete high levels of acetylated polyamines into the prostatic lumen. This distinctive characteristic places added strain on the connected pathways, which are forced to increase metabolite production to maintain pools. The methionine salvage pathway recycles the one-carbon unit lost to polyamine biosynthesis back to the methionine cycle, allowing for replenishment of SAM pools providing a mechanism to help mitigate metabolic stress associated with high flux through these pathways. The rate-limiting enzyme involved in this process is methylthioadenosine phosphorylase (MTAP), which, although commonly deleted in many cancers, is protected in prostate cancer. We report near universal retention of MTAP expression in a panel of human prostate cancer cell lines as well as patient samples. Upon metabolic perturbation, prostate cancer cell lines upregulate MTAP and this correlates with recovery of SAM levels. Furthermore, in a mouse model of prostate cancer we find that both normal prostate and diseased prostate maintain higher SAM levels than other tissues, even under increased metabolic stress. Finally, we show that knockdown of MTAP, both genetically and pharmacologically, blocks androgen sensitive prostate cancer growth in vivo. Our findings strongly suggest that the methionine salvage pathway is a major player in homeostatic regulation of metabolite pools in prostate cancer due to their high level of flux through the polyamine biosynthetic pathway. Therefore, this pathway, and specifically the MTAP enzyme, is an attractive therapeutic target for prostate cancer.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 7486