Abstract
Kai Liu1,2,*, Tao Jiang1,*, Yabo Ouyang1,2, Ying Shi1,2, Yunjin Zang1, Ning Li1, Shichun Lu1, Dexi Chen1,2
1Beijing You’an Hospital, Capital Medical University, Beijing, 100069, China
2Beijing Institute of Hepatology, Beijing, 100069, China
*These authors have contributed equally to this work
Correspondence to:
Shichun Lu, e-mail: Isc620213@aliyun.com
Dexi Chen, e-mail: dexi0963@yahoo.com
Keywords: ASPP2, p53, SOS1, EGFR, apoptosis
Received: December 08, 2014 Accepted: April 15, 2015 Published: April 27, 2015
ABSTRACT
ASPP2 can bind to p53 and enhance the apoptotic capabilities of p53 by guiding it to the promoters of pro-apoptotic genes. Here, ASPP2 overexpression for 24 hours transiently induced apoptosis in hepatoma cells by enhancing the transactivation of p53 on pro-apoptotic gene promoters. However, long-term ASPP2 overexpression (more than 48 hours) failed to induce apoptosis because p53 was released from the pro-apoptotic gene promoters. In non-apoptotic cells, nuclear EGFR induced SOS1 expression by directly binding to the SOS1 promoter. SOS1 activated the HRAS/PI3K/AKT pathway and resulted in nuclear translocation of p-AKT and Bcl-2. The interaction between p-AKT and ASPP2 facilitates Bcl-2 binding to p53, which releases p53 from the pro-apoptotic gene promoters. The in vivo assay demonstrated that EGFR/SOS1-promoted growth of nuclear p-AKT+, Bcl-2+ cells results in the resistance of hepatoma cells to ASPP2-p53 complex-induced apoptosis and that blocking nuclear translocation of EGFR dramatically improves and enhances the pro-apoptotic function of ASPP2. Finally, the activation of the HRAS/PI3K/AKT pathway by EGFR-induced SOS1 also inhibits cisplatin-induced apoptosis, suggesting a common apoptosis-evasion mechanism in hepatoma cells. Because evasion of apoptosis contributes to treatment resistance in hepatoma, our results also support further investigation of combined therapeutic blockade of EGFR and SOS1.