Oncotarget

Research Papers:

Enhanced proteasomal activity is essential for long term survival and recurrence of innately radiation resistant residual glioblastoma cells

Jacinth Rajendra, Keshava K. Datta, Sheikh Burhan Ud Din Farooqee, Rahul Thorat, Kiran Kumar, Nilesh Gardi, Ekjot Kaur, Jyothi Nair, Sameer Salunkhe, Ketaki Patkar, Sanket Desai, Jayant Sastri Goda, Aliasgar Moiyadi, Amit Dutt, Prasanna Vankatraman, Harsha Gowda and Shilpee Dutt _

PDF  |  HTML  |  Supplementary Files  |  How to cite

Oncotarget. 2018; 9:27667-27681. https://doi.org/10.18632/oncotarget.25351

Metrics: PDF 1733 views  |   HTML 3067 views  |   ?  


Abstract

Jacinth Rajendra1,7, Keshava K. Datta2, Sheikh Burhan Ud Din Farooqee3,7, Rahul Thorat5, Kiran Kumar2, Nilesh Gardi4, Ekjot Kaur1,7, Jyothi Nair1,7, Sameer Salunkhe1,7, Ketaki Patkar1, Sanket Desai4,7, Jayant Sastri Goda8, Aliasgar Moiyadi6, Amit Dutt4,7, Prasanna Venkatraman3,7, Harsha Gowda2 and Shilpee Dutt1,7

1Shilpee Dutt Laboratory, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India

2Institute of Bioinformatics, International Technology Park, Bangalore, India

3Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India

4Integrated Genomics Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India

5Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India

6Department of neurosurgery Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India

7Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India

8Department of Radiation Oncology, Tata Memorial Centre, Advanced Centre for Treatment, Research and Education in Cancer, Navi Mumbai, India

Correspondence to:

Shilpee Dutt, email: sdutt@actrec.gov.in

Keywords: glioblastoma; radio-resistant cells; recurrence; proteomic analysis; proteasomes

Received: August 28, 2017     Accepted: April 25, 2018     Published: June 12, 2018

ABSTRACT

Therapy resistance and recurrence in Glioblastoma is due to the presence of residual radiation resistant cells. However, because of their inaccessibility from patient biopsies, the molecular mechanisms driving their survival remain unexplored. Residual Radiation Resistant (RR) and Relapse (R) cells were captured using cellular radiation resistant model generated from patient derived primary cultures and cell lines. iTRAQ based quantitative proteomics was performed to identify pathways unique to RR cells followed by in vitro and in vivo experiments showing their role in radio-resistance. 2720 proteins were identified across Parent (P), RR and R population with 824 and 874 differential proteins in RR and R cells. Unsupervised clustering showed proteasome pathway as the most significantly deregulated pathway in RR cells. Concordantly, the RR cells displayed enhanced expression and activity of proteasome subunits, which triggered NFkB signalling. Pharmacological inhibition of proteasome activity led to impeded NFkB transcriptional activity, radio-sensitization of RR cells in vitro, and significantly reduced capacity to form orthotopic tumours in vivo. We demonstrate that combination of proteasome inhibitor with radio-therapy abolish the inaccessible residual resistant cells thereby preventing GBM recurrence. Furthermore, we identified first proteomic signature of RR cells that can be exploited for GBM therapeutics.


Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 25351