Oncotarget

Research Papers:

Overexpression of PLOD3 promotes tumor progression and poor prognosis in gliomas

PDF |  HTML  |  How to cite

Oncotarget. 2018; 9:15705-15720. https://doi.org/10.18632/oncotarget.24594

Metrics: PDF 1618 views  |   HTML 3810 views  |   ?  

Chia-Kuang Tsai, Li-Chun Huang, Wen-Chiuan Tsai, Shih-Ming Huang, Jiunn-Tay Lee and Dueng-Yuan Hueng _

Abstract

Chia-Kuang Tsai1,2, Li-Chun Huang3, Wen-Chiuan Tsai4, Shih-Ming Huang1,3, Jiunn-Tay Lee2 and Dueng-Yuan Hueng1,3,5,6

1Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, ROC

2Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC

3Department of Biochemistry, National Defense Medical Center, Taipei, Taiwan, ROC

4Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC

5Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC

6Penghu Branch of Tri-Service General Hospital, Penghu, Taiwan, ROC

Correspondence to:

Dueng-Yuan Hueng, email: hondy2195@yahoo.com.tw

Keywords: PLOD3; gene expression omnibus profile; glioma; prognosis

Received: September 04, 2017     Accepted: February 21, 2018     Epub: February 28, 2018     Published: March 20, 2018

ABSTRACT

High-grade gliomas are the most threatening brain tumors due to aggressive proliferation and poor prognosis. Thus, utilizing genetic glioma biomarkers to forecast prognosis and guide clinical management is crucial. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) modulates cancer progression and metastasis. However, its detailed function in cancer remains largely uninvestigated. PLOD3 expression was evaluated with real-time PCR in glioblastoma (GBM) cell lines and by Gene Expression Omnibus dataset analysis and immunohistochemistry of glioma tissues. We investigated the clinical use of PLOD3 for determining glioma prognosis. The biological roles of PLOD3 in proliferation, migration and invasion of GBM cells were studied both in vitro with wound-healing and transwell assays and in vivo using an orthotopic xenograft mouse model. Hypoxia and western blotting were applied to discover the molecular mechanisms underlying PLOD3 functions. PLOD3 mRNA and protein expression were upregulated in glioma tissues compared to normal brain tissues. PLOD3 overexpression was correlated with negative survival in glioma patients. PLOD3 silencing suppressed cell proliferation and induced G1 phase arrest through p53-independent regulation of the p21 pathway. Inhibition of PLOD3 in glioma cells decreased VEGF expression, migration and invasion by downregulating mesenchymal markers, including Snail and Twist. Notably, knockdown of PLOD3 inhibited HIF-1α accumulation via the ERK signaling pathway under hypoxia. Taken together, these discoveries reveal that PLOD3 is a potential therapeutic target in human gliomas.



Creative Commons License All site content, except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
PII: 24594